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We study a one-dimensional lattice gas “dynamical geometry model” in which local reversible interactions
of counter-rotating groups of particles on a ring can create or destroy lattice sites. We exhibit many periodic
orbits and show that all other solutions have asymptotically growing lattice length in both directions of time.
We explain why the length grows as �t in all cases examined. We completely solve the dynamics for small
numbers of particles with arbitrary initial conditions.
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I. INTRODUCTION

Lattice models are ubiquitous in physics, whether as regu-
larizations for continuum theories �quantum field theory,
quantum gravity�, scaffolding for numerical methods �classi-
cal field theories, continuum mechanics�, or because the lat-
tice is physically real �condensed matter physics�. One may
distinguish between applications in which the lattice struc-
ture and size are fixed, or at least not dynamical, and those in
which the lattice itself evolves dynamically. Examples of dy-
namical lattices include the causal dynamical triangulation
approach to quantum gravity �1�, the variable-length lattice
models of recent relevance to the AdS/CFT correspondence
�the conjectured equivalence between type IIB superstring
theory on the product AdS5�S5 of the five-dimensional
Anti-de Sitter space with the five-dimensional sphere, and
the N=4 supersymmetric Yang-Mills gauge theory in four
dimensions� �2�, and models of evolving networks such as
the World Wide Web �3�.

In Ref. �4�, Hasslacher and Meyer constructed a lattice
gas model with dynamical geometry and a reversible evolu-
tion rule. It can be viewed as a toy model for general rela-
tivity in that the geometry �length� of the one-dimensional
lattice changes in response to the motion �scattering� of the
matter particles on it, although the detailed dynamics is very
different. We study it because it is the uniquely simplest
one-dimensional reversible lattice gas with dynamical geom-
etry, its classical dynamics may well be exactly soluble, and
it should be straightforward to quantize despite the dynami-
cal background geometry. In this paper, we extend the pre-
vious analyses of the classical dynamics. The central issue is
the long-time behavior of the lattice length. We will com-
pletely solve the dynamics for systems of a few particles, and
explain the typical �t growth of the length which has been
seen previously in simulations.

The model consists of a one-dimensional lattice of L sites
with periodic boundary conditions �a ring�, where L may
change with time. The initial state contains NR right-moving
particles and NL left-moving ones, which may be placed ar-

bitrarily on the sites subject to an exclusion principle: two
particles moving in the same direction may not occupy the
same site. The numbers of left and right movers are each
conserved during evolution. Time proceeds in discrete steps.
At each time step, the particles first advect: each particle
moves one site in its own direction of motion. Then the
particles interact, or scatter, according to the following rules
�see Fig. 1�.

�1� If a right and left mover occupy the same site, this site
is replaced by two sites, with the right mover on the right-
most site and the left mover on the left-most site.

�2� If two adjacent sites are singly occupied, with a right
mover on the right-most site and a left mover on the left
most, these sites are replaced by a single site occupied by
both particles.

�2a� Although this is not an independent rule, we empha-
size that rule �2� is not applied to doubly occupied sites since
the resulting state would violate the exclusion principle.

The scattering rules are applied simultaneously to all lat-
tice sites, in parallel rather than sequential update. These
rules define a reversible dynamics in that every state has not
only a unique successor but also a unique predecessor.

Point �2a�, which we will sometimes refer to as the “ex-
clusion rule,” is the major complication in analyzing the dy-
namics, as will be seen in Sec. II below. The situation it
describes can arise following advection when a single par-
ticle moving in one direction approaches a pair of particles
on adjacent sites moving in the other. Such a pair of particles
moving in the same direction on adjacent sites will be called
simply a pair, and we will see that such “bound states” can
play the role of quasiparticles in the system.

Example 1: One against one. As an illustration of the
dynamics following from these rules, consider the trivial
case of a single right mover facing a single left mover on a
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FIG. 1. The scattering rules. Filled-in sites are occupied. Here l
denotes a left mover, r a right mover.
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lattice of length L�2. The particles scatter twice as each
makes a complete circuit around the lattice, and the exclu-
sion rule obviously cannot apply. Let d�r , l� be the length of
the arc from the right mover to the left mover which is
shrinking during advection, and p= �d�r , l�� its parity mod 2.
The next interaction will create or destroy a site according as
p is 0 or 1. We display the pair �p ; �L�� following each scat-
tering, where �L� is the parity of the lattice length. These
parities change only during scattering, not advection, and
suffice to determine the sequence of site creation/destruction
events. To the right we give the value of the growth �L
resulting from each interaction:

�1;1�
↓− 1

�0;0�
↓ + 1

�0;1�
↓ + 1

�1;0�
↓− 1

�1;1�

The system returns to its initial state, with the same lattice
length, after four scattering events. All four possible parity
combinations of �p ; �L�� appear in the above cycle, and any
one can be viewed as the “initial” state. The evolution in this
simplest case is periodic in time independent of the initial
values of L and d�r , l�.

This example suggests, and Sec. II will confirm, the im-
portance of parity for this system. In general, one might ex-
pect that each right mover will interact with each left mover
as they pass. Each interaction changes the parity of the
length L, since �L= ±1. The changes in parity would thus be
highly predictable. The importance of the exclusion rule is
that the occurrence of pairs spoils this predictability. For ex-
ample, when a right mover faces a pair of left movers, it may
eventually land on the leading or the trailing member of the
pair. In the former case two interactions occur as expected,
with �L=0, but in the latter case, shown as �2a� in Fig. 1,
only a single interaction occurs and �L= +1.

After initial explorations in Ref. �4�, numerical simula-
tions of the evolution of initial states rather densely popu-
lated with particles �25 particles on a 50 site lattice� were
carried out in Ref. �5�. Despite the reversibility of the dy-
namics, most initial states result in growth of the lattice size,
empirically as L�t���t at late times, with large fluctuations.
On small lattices, some “rogue states” were also found with
L�t� periodic, but the proportion of these dropped off rapidly
with increasing initial lattice size. Two versions of mean-
field theory were proposed to explain the observed growth
rate, one of which predicted �t growth as observed while the
other predicted t1/3. In this paper we will identify many pe-
riodic solutions on lattices of arbitrary size, and also propose
an alternative explanation for the typical �t growth. The re-
versibility of the dynamics leads to the following simple but
fundamental

Evolution theorem. Every solution of the model is either
periodic, or grows without bound in both directions of time.

Proof. Consider a solution for which the lattice length
remains bounded in one direction of time, say t→�. Since
there are only finitely many distinct states of this system on
a lattice of given size, the evolution must eventually return to
some previous state. The evolution is then periodic from this
time on. By reversibility and uniqueness, it is periodic in
backward time also.

The organization of this paper is as follows. In Sec. II we
give a general analysis of the evolution of initial states, as-
suming that no pairs are present or form later. We emphasize
the crucial role of parity in the problem �first noted in Ref.
�5�� and establish the existence of many periodic solutions.
We explain why growing solutions of this kind must grow as
�t. In Sec. III �with details in the appendices� we exhaus-
tively analyze the evolution of all initial states containing at
most four particles, possibly including pairs. We see cases in
which permanent pairs form and behave as quasiparticles or
bound states in the system. The major obstacle to a complete
solution of this model is the lack of a general framework for
describing these quasiparticles and their effects. Section IV
contains conclusions and open problems. We would like to
acknowledge discussions at the early stages of this work with
the authors of Ref. �6�, who have independently obtained
similar results.

II. GENERAL ANALYSIS OF STATES WITHOUT
NEAREST-NEIGHBOR PAIRS

Although simulations of the time evolution of “random”
initial states look quite complicated, there are several impor-
tant general principles governing the dynamics which can be
formulated. First, the translational �rotational� symmetry of
the lattice allows the dynamics to be viewed in various ref-
erence frames. We have thus far used a frame fixed with
respect to the lattice, but we can transform to the rest frame
of either the right- or the left-moving particles. The rest
frame of the left movers, for example, is defined as follows.
At each advection step, the left movers move one site to the
left. We can follow this advection step with a symmetry
�gauge� transformation which rotates every particle one step
to the right, thus undoing the advection for the left movers.
This is followed by the scattering step as usual. In this frame,
or gauge, the left movers do not advect, while the right mov-
ers advect two sites per time step.

The use of the rest frame for one group of particles makes
it clear that parity �mod 2� plays a crucial role in the dynam-
ics. The size of the gap between two left movers, or two right
movers, is trivially preserved by advection, but so is the
parity of the �shrinking� interval between a left and a right
mover. If this interval contains no other particles, its parity
determines the character of the eventual interaction between
these particles, assuming neither belongs to a nearest-
neighbor pair: a site will be created �respectively, destroyed�
if this parity is even �respectively, odd�. In turn, either type
of interaction will reverse the parity of a gap containing the
newly created or destroyed site. Thus, we can reduce the
dynamics mod 2, and study the evolution of the gap parities
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according to these simple rules. The presence of pairs can
invalidate the analysis when the exclusion rule prevents de-
struction events which would otherwise occur. The corre-
sponding parity reversals then do not take place.

Thus, our plan for analyzing the dynamics is to assume
first that no pairs are present, and no pairs form during evo-
lution. Analysis via parity then leads to very simple and gen-
eral results, which are valid if they are self-consistent, that is,
if they do not lead to the formation of pairs. We then con-
sider the excluded cases in which pairs are present initially or
form later. The pairs can violate the parity “selection rules,”
causing transitions between the types of behavior observed
when those rules hold. At present, we can only analyze the
effects of pairs in a laborious case-by-case manner with
small numbers of particles. An important task for the future
is to develop appropriate concepts for a general analysis of
the effects of pairs, which might be thought of as quasipar-
ticles in the system.

To introduce the technique of parity analysis, consider the
case of one right mover versus a string of N�NL left mov-
ers, without pairs. We work in the rest frame of the left
movers, so the right-moving particle advects by two sites per
time step, preserving parities. We label the left movers from
1 to N in the order that the right mover will encounter them,
and describe the system by the gaps g12,g23, . . . ,gN1 between
successive left movers as well as the parity p of the separa-
tion d�r , l1� between the right mover and the first left mover
�see Fig. 2�. �The term “gap” always refers to the distance
between consecutive left movers, or consecutive right mov-
ers; we use the term “separation” for the shrinking distance
between a left mover and right mover before they scatter.�
This data is preserved by advection, and changes as follows
under scattering:

�p;g12,g23, . . . ,gN1� → ��p + g12�;g23, . . . ,gN1,g12 + �− 1�p� ,

where �x� is the parity of x. The gaps are always listed in the
order that the right mover will encounter them.

Let the right mover make a complete circuit, passing all N
left movers and returning to face the first again. �Note: this
complete circuit in the rest frame is only a half circuit in the
lattice-fixed frame. In that frame, the right mover passes each
left mover twice as every particle makes a complete circuit
of the lattice.� Each gap parity gi,i+1 has been reversed, and p
has changed by the sum of the original gap parities, which is
the parity of the original lattice length L. �It may be surpris-
ing that the parity of L prior to the complete circuit deter-
mines whether the right mover returns to its original position
relative to the first left mover or is offset from it by one site.
The point is that sites which may be created or destroyed
during this circuit do not increase or decrease the distance
the right mover must advect to finish the circuit. This is

because the right mover is carried forward or backward with
the newly created or destroyed site as part of the scattering
step. Changes in L during this circuit take effect at the next
circuit.� The parity of the lattice length itself has changed by
�N� due to the N scattering events. Now let the right mover
make another circuit. This restores all the original gap pari-
ties gi,i+1, but not necessarily p, which differs from its origi-
nal value by �2L+N�= �N�.

Supposing first that N is even, the system is parity-
periodic with period two circuits, that is, 2N interactions.
This implies that further circuits will repeat the same pattern
of creation and destruction interactions as the first two cir-
cuits. However, the actual gap lengths are not periodic, be-
cause the interactions of the second circuit do not undo the
effects of the first. If, for example, L is odd, it is easy to see
that g12 is unchanged after two circuits while g23 has changed
by ±2. Indeed, regardless of �L�, alternate gaps have changed
by 0, ±2,0 , ±2 , . . ., after two circuits. The system either
grows forever �if all signs are �� or a pair eventually forms
and invalidates the analysis.

Suppose next that N is odd. After two circuits p has re-
versed parity while all other gaps and L have their original
parities. Therefore each scattering event of circuit three will
be opposite in character to the corresponding event of circuit
one �site creation replacing site destruction and vice-versa�,
and likewise for circuits 4 and 2. After four circuits, every
gap has its original length and p has its original parity: the
evolution is truly periodic with period four circuits, or 4N
interactions. During these four circuits, each gap can change
by at most ±2 from its initial size. Therefore, gi,i+1�3 is
sufficient to prevent the formation of pairs and render this
behavior self-consistent. We have thus established the exis-
tence of a large class of periodic solutions.

Note that there are 2N+1 possible parity states, given by
the parities of the N gaps and of p. Since this number is
finite, periodic evolution of the parities is inevitable. Since
the period, 2N or 4N, only grows linearly with N, the 2N+1

states clearly belong to a large number of disjoint parity or-
bits when N is large. Some examples with N small are given
in the next section.

With a mild additional assumption this analysis can be
extended to the general case of NR right movers versus NL
left movers, of course assuming the absence of pairs. Pro-
vided that no right mover is very near a left mover in the
initial state, we can again consider a complete circuit in
which every right mover passes every left mover exactly
once. Each right mover interacts NL times, making NRNL
interactions in all. In the rest frame of the left movers, it is
clear that each gap between consecutive left movers changes
parity by �NR� during one circuit of the right movers. Simi-
larly, each gap between consecutive right movers changes
parity by �NL�. There may also be a parity change in the
separation between a chosen left mover and a chosen right
mover after one circuit. It suffices to compute this for one
such choice, because the others are then determined by the
known gap changes. However, this “offset parity” depends
on the exact configuration of the particles around the ring.
We will always work in the rest frame of the left movers, and
compute the offset between a chosen right mover and the
first left mover it will encounter.

FIG. 2. Notation for interparticle gaps and separations, one right
mover and N left movers. p is the parity of d�r , l1�.
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For example, suppose that initially one arc of the ring
contains all the left movers and no right movers, and a dis-
joint arc contains all the right movers. Consider the leading
right mover. As it passes the left movers, it is carried along
with the creation and destruction events, and its offset parity
after one cycle is simply �L�. Contrast this with an initial
configuration in which NL=NR=N and the left and right
movers alternate around the ring. Choose a “leading” right
mover arbitrarily. Number the left movers in the order that
this right mover will encounter them. It passes the first and
traverses the gap g12, but the next gap has already been
changed to g23±1 by the interaction with the right mover
ahead of the chosen one. Similarly the next gap will be
g34±1±1 �independent signs� when the chosen particle gets
there, and the offset has the parity of �L+1+2+ ¯ + �N
−1��= �L+ 1

2N�N−1��. In general, the offset is L plus the num-
ber of interactions with left movers which occur before the
chosen right mover reaches them. The latter contribution
cancels out �mod 2� after two circuits, when the offset for
any particle will be �2L+NLNR�= �NLNR�.

Now we analyze the various parity combinations in detail.
Suppose first that both NR and NL are even. Then the parity
of every gap is unchanged after one circuit. If the offset
parity for some right mover is also even, this means that the
separation of this right mover from the first left mover it will
encounter is unchanged in parity after one circuit. Adding
suitable right-right or left-left gaps gives this separation for
any other right mover, which is therefore also unchanged in
parity. Therefore the offset is even for every particle, and the
pattern of interactions at every successive circuit is identical.
The system either grows indefinitely or eventually forms a
pair and invalidates the analysis. If, however, the offset for
some �hence every� particle was odd, then the interactions of
the second circuit undo the effects of the first, and the system
is truly periodic with period two circuits or 2NRNL interac-
tions. No gap changes by more than max�NR ,NL� during the
evolution.

Next suppose that NR and NL are both odd. Now every
gap changes parity in a circuit, as does the lattice length.
After two circuits, the gap parities have their original values,
but the offset is odd. As in the case of 1 versus odd N above,
each scattering event of circuit three is opposite in character
to the corresponding event of circuit one, and likewise for
circuits four and two. This results in truly periodic solutions
with period four circuits or 4NRNL interactions.

Finally, suppose NR is odd and NL is even �the opposite
case being the same by symmetry�. After one cycle the left-
left gap parities are reversed, while the parities of the right-
right gaps and the lattice length are unchanged. As in the
case of 1 versus even N above, the interactions of the next
cycle cancel those of the first for every other left-left gap, but
augment those of the first for the remaining left-left gaps.
The result is either net growth or pair formation.

To summarize, in the absence of pairs periodic solutions
are quite generic in the cases NR ,NL both odd, and both even
with offset parity odd. Now consider any solution which
grows indefinitely. Because the gap and offset parities repeat
after a certain number of circuits, and determine the pattern

of interactions and thus the net number of sites created, the
growth is characterized by some average number of sites
created per circuit. Let k be this number, and L�t� be the
lattice length at time t. Since a circuit takes L /2 time steps,
in the limit of continuous time we have the differential equa-
tion

dL

dt
=

2k

L
,

with asymptotic solution L�2�kt. The �t growth observed
in simulations thus simply reflects constant average growth
per circuit.

It is tempting to claim that this reasoning is completely
general, applying even if nearest-neighbor pairs form. The
argument would be that the pattern of interactions is still
determined by a finite set of data, namely, the parities of all
gaps and an offset, and a list of which particles are paired. As
this finite set of data changes, it must eventually return to a
former state, from which point the pattern of interactions will
be periodic. There will be a net number of sites created per
period, leading again to the �t growth, on a sufficiently long
time scale. However, this finite set of data is in fact insuffi-
cient to determine the sequence of interactions, because one
needs the actual gap sizes, not just their parities, to predict
when a new pair will form. Thus, at present we cannot prove
that every nonperiodic solution grows according to the �t
law.

III. FEW-PARTICLE SYSTEMS

In this section �and the appendices� we will completely
solve the dynamics for all initial states containing at most
four particles. By symmetry we may assume at most two are
right movers; for the moment we consider a single right
mover with up to three left movers. We describe the states of
the system at time t by the parity p of the separation between
the right mover and the left mover it will encounter next, and
by the gaps gi,i+1 between left movers i and i+1 �where the
indices i , i+1 are taken modulo NL�, as in Fig. 2. After every
interaction we give the new state.

One against NL

Example 2: One against two. The first nontrivial case is
one right mover against two left movers. Here, the exclusion
rule can apply �nearest-neighbor pairs suppressing the de-
struction of sites�.

We describe the possible states as follows:
�p ;gi,i+1 ,gi+1,i+2 ; �L��, where p is the parity of the separation
d�r , li� between r and the closest left mover li �i=1,2�, and
�L� is the parity of the lattice length. Note that �L�
= �g12+g21�. For convenience we display parity by using bold
letters gi,i+1 if and only if the gap gi,i+1 is odd.

There are eight possible combinations of the parities of
d�r , li�, gi,i+1, gi+1,i+2. We start with the two states �1� and �i�,
assuming at first that no pairs occur �see below�.
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�1� �1;g12 ,g21;1� �i� �1;g12,g21;0�
↓−1 ↓−1

�2� �0;g21,g12−1;0� �ii� �1;g21,g12−1 ;1�
↓+1 ↓−1

�3� �0;g12−1 ,g21+1 ;1� �iii� �1;g12−1 ,g21−1;0�
↓+1 ↓−1

�4� �0;g21+1 ,g12 ;0� �iv� �0;g21−1 ,g12−2;1�
↓+1 ↓+1

�5� �1;g12 ,g21+2;1� �v� �1;g12−2 ,g21;0�

In this chart, the quantities g12 and g21 denote the initial
values of these gaps; current values are indicated by position
within the brackets. For example, line �3� indicates that the
right mover is about to encounter l1, the gap from l1 right-
ward to l2 is currently g12−1, and the gap from l2 rightward
to l1 is g21+1. Observe that the eight states �1�–�4� and �i�–
�iv� cover all the parity configurations. Thus if no pairs oc-
cur, these eight states describe all possible behaviors of one
particle against two.

Consider the first example, states �1�–�5�. Note that the
parities of state �5� are a repetition of the parities of state �1�.
There is one gap that has grown by two, g21�g21+2, while
the other gap remained constant. So this is a parity-periodic
growing orbit as long as no pairs appear, consistent with the
analysis of one against even N in Sec. II. The only places
where a pair can form are in �1�, �5�, �9�, and so on. The
restriction g12�3 prevents the formation of pairs. In particu-
lar, we have a growing orbit if and only if g12�3. The
growth rate is as �t as discussed previously.

The second example describes a shrinking system. After
four interactions we get back to the same configuration of
parities but with a shorter lattice. Two sites have been elimi-
nated. It is clear that eventually pairs will form and alter the
evolution in the states �iii�, �vii�, �xi�, etc., where we have an
odd distance of r to l1. Although we will consider the effects
of these pairs below, the eventual fate of this system can be
determined by the following time-reversal argument. Run-
ning time backward from the initial state, we would obvi-
ously see this system grow, with no pair formation. By the
Evolution Theorem, this system must eventually grow in the
future as well.

To complete the analysis of one right mover against two
left movers, we now describe what happens if pairs form. In
that case g12=1, and we can assume that the separation
d�r , l1� is odd, since otherwise the existence of the pair does
not affect the evolution. Since we have the choice of the
parity of g21, there are two types of states with a pair:

�A� �B�
�1;g12=1 ,g21;1� �1;g12=1 ,g21 ;0�

↓+1 ↓+1
�0;g12=1 ,g21+1 ;0� �1;g12=1 ,g21+1;1�

In the above evolution, the boldface values of �L= +1
indicate steps at which the evolution was altered by the pres-

ence of the pair. Note that �A� has evolved into step �4�.
Since in �A� we started with g21�2, we get g21+1�3 and
remain in the growing orbit. Case �B� has evolved into �A�
after one step, so both �A� and �B� evolve to the growing
orbit. The pair breaks, and the gap between these neighbors
subsequently grows.

Now let r face a sequence of left movers, l1 , . . . , lNL
, the

initial state being �p ;g12,g23, . . . ,gNL1�. If l1 and l2 do not
form a pair, then the state following the first interaction is as
given in the previous section, namely,

��p + g12�;g23, . . . ,gNL1,g12 + �− 1�p� .

If particles 1 and 2 do form a pair, this changes the outcome
iff p=1. In that case, r does not interact with l1, and follow-
ing the interaction with l2 the state will be

��g23�;g34, . . . ,gNL1,g12,g23 + 1� .

Recall that the interaction between r and a single pair can
be conceptualized as follows. If the separation d�r , l1� to the
leading member of the pair is odd, the right mover lands on
the trailing member of the pair. The pair remains intact and a
site is created behind it, so that �L=1. In this case the pair
behaves as a unit like a single left mover. If the separation
d�r , l1� is even, the right mover lands on the leading member
of the pair. A site is created between the left movers, break-
ing the pair, and another site is destroyed behind the pair,
resulting in �L=0. More globally, under the right conditions
a pair may persist indefinitely, behaving like a quasiparticle
in the system, as we will see later. Or a pair might break and
reform repeatedly. Notice that, in contrast, three left movers
on adjacent sites cannot form a stable “triple;” it will neces-
sarily be broken by the next interaction with a right mover.

Example 3: One against three. Let us turn to the case of
one right mover against three left movers. Here we describe
a state by the parity p of d�r , l1� �assuming r faces l1 next�,
by g12, g23, g31 and �for convenience, although it is redun-
dant� the parity �L� of the length of the lattice. There are
sixteen possible parity configurations for the gaps and sepa-
ration p.

We obtain two periodic orbits of length 12 under the as-
sumption that no pairs form, consistent with the analysis of
one against odd N in Sec. II. We give them here:
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�1� �1;g12,g23,g31;0� �a� �1;g12,g23 ,g31;1�
↓−1 ↓−1

�2� �1;g23,g31,g12−1 ;1� �b� �1;g23 ,g31,g12−1 ;0�
↓−1 ↓−1

�3� �1;g31,g12−1 ,g23−1 ;0� �c� �0;g31,g12−1 ,g23−1;1�
↓−1 ↓+1

�4� �1;g12−1 ,g23−1 ,g31−1 ;1� �d� �0;g12−1 ,g23−1 ,g31+1 ;0�
↓−1 ↓+1

�5� �0;g23−1 ,g31−1 ,g12−2;0� �e� �1;g23−1 ,g31+1 ,g12;1�
↓+1 ↓−1

�6� �1;g31−1 ,g12−2 ,g23;1� �f� �1;g31+1 ,g12,g23−2 ;0�
↓−1 ↓−1

�7� �0;g12−2 ,g23,g31−2;0� �g� �0;g12,g23−2 ,g31;1�
↓+1 ↓+1

�8� �0;g23,g31−2 ,g12−1 ;1� �h� �0;g23−2 ,g31,g12+1 ;0�
↓+1 ↓+1

�9� �0;g31−2 ,g12−1 ,g23+1 ;0� �i� �1;g31,g12+1 ,g23−1;1�
↓+1 ↓−1

�10� �0;g12−1 ,g23+1 ,g31−1 ;1� �j� �1;g12+1 ,g23−1 ,g31−1 ;0�
↓+1 ↓−1

�11� �1;g23+1 ,g31−1 ,g12;0� �k� �0;g23−1 ,g31−1 ,g12;1�
↓−1 ↓+1

�12� �0;g31−1 ,g12,g23;1� �l� �0;g31−1 ,g12,g23 ;0�
↓+1 ↓+1

�1� �1;g12,g23,g31;0� �a� �1;g12,g23 ,g31;1�

The first system is free of pairs if and only if g12�4,
g23�2, and g31�4: the only cases where the exclusion rule
can apply are in steps �4� if g12−1=1, in �6� if g31−1=1, and
in �11� if g23+1=1. �Of course, this would literally imply
g23=0, which is not possible by the exclusion principle.
What is meant is that an initial state with the parities of line
�11� would contain a pair if the entry g23+1 were 1 instead.�

The second system is free of pairs if and only if g12�2,
g23�3, g31�2. The only cases where the exclusion rule can
apply are in steps �b� if g23=1, in �f� if g31+1=1, and in �j�
if g12+1=1.

Note that all sixteen parity configurations appear in the
two orbits. The first orbit covers 12 parity configurations. In
the second orbit, the parity configurations repeat after 4
steps, but the actual gap sizes have period 12.

What is left is to understand the cases where pairs form
�and thus the exclusion rule applies�. In other words we have
to study the systems with d�r , l1� odd, g12=1 and all possible
parities of g23,g31. We give them labels as follows:

parities of �g23,g31� label
�0,0� �A�
�0,1� �B�
�1,0� �C�
�1,1� �D�

States of types �B� and �C� belong to a single orbit. The pair

stays intact and acts as a permanent quasiparticle, and the
lattice grows exactly as in the 1 vs 2 case:

�C� �1;g12=1 ,g23 ,g31;0�
↓+1

�1;g31,g12=1 ,g23+1;1�
↓−1

�B� �1;g12=1 ,g23+1 ,g31−1 ;0�
↓+1

�0;g31−1 ,g12=1 ,g23+2 ;1�
↓+1

�C� �1;g12=1 ,g23+2 ,g31;0�

To understand why the pair is permanent in this example,
recall from Sec. II or example 2 the simpler case of one right
mover against two left movers, with p and �L� even. In this
system, p and �L� remain even forever and �L alternates
between 0 and +2 on successive circuits. Now convert the
leading left mover into a pair by adding a third left mover
immediately in front of it. p is now odd and the new left
mover is completely inert, as the right mover always lands
on the trailing �original� member of this pair. The pair is
permanent and the evolution is unaffected by the third left
mover.

States of types �A,D� belong to a single orbit, and the
details of their evolution are given in Appendix A. This time
the pair is “semipermanent,” repeatedly breaking but imme-
diately reforming.
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Example 4: Two against two. This case needs more infor-
mation: now there are two right movers and they interact in
a row. We have to adapt the notation and keep track of the
positions of the right movers �see Fig. 3�.

Suppose r1 interacts first with l1. Then there are several
possibilities.

�i� Particle r1 interacts next with l2, then r2 interacts with
l1.

�ii� There is an interlaced pattern: particle r2 interacts
with l1, then r1 interacts with l2, then r2 with l2.

�iii� Particles r1 and l2 interact at the same time step as r2
with l1.

It can be checked that it does not matter which interaction
is first �as long as no pairs occur�. This is a reflection of the
locality of the scattering.

Figure 3 shows a “noninterlaced” state in which there is
no left mover between the two right movers, and vice versa.
We can always assume such an initial state, unless the four
particles are located symmetrically around the ring: right
movers diametrically opposite one another, left movers like-
wise along a perpendicular diameter. It is easy to see that
these exceptional initial states evolve as periodic orbits, and
we will not consider them further.

The complete set of examples of the evolution of all pos-
sible initial states appears in Appendix B. Here we merely
summarize the main features. States without pairs follow the
analysis of Sec. II for NR ,NL even. When the offset is odd,
the solutions are periodic with period 8 interactions. For
even offset the lattice grows, or shrinks until a pair forms.
When pairs are present, we find that in all cases they even-
tually break and the lattice grows as �t.

IV. CONCLUSIONS

In this paper we have studied the lattice gas model with
dynamical geometry introduced by Hasslacher and Meyer
�4�. We first gave a general discussion of the pair-free evo-
lution, establishing the importance of parity and the exis-
tence of many periodic orbits. The �t growth of the lattice
length observed in simulations is expected whenever the
length grows by a constant amount, on average, as the par-
ticles complete one circuit. This is the case without pairs, and
it is plausible that it is the general asymptotic behavior, but
we have no proof of this. At present we can include the
effects of pairs only by an exhaustive case-by-case analysis,
which we carried out for systems of at most four particles.
The pairs can form permanent “bound states,” and it seems
promising to view them as quasiparticles. With an effective
description of these quasiparticles, we may hope to solve the
dynamics of this model completely.

Although the microscopic dynamics of this model is re-
versible, it exhibits macroscopic “irreversibility” as the

length grows for “most” states. It might be interesting to
quantify what fraction of initial states having given NL,NR,L
ultimately grow.

The natural conjecture regarding the asymptotics of the
model is that all nonperiodic solutions grow as �t, reflecting
a constant average growth per circuit. Is this really true?
Perhaps there are solutions with a characteristic time scale
much longer than one circuit. For example, imagine a solu-
tion in which the length initially has average growth zero per
circuit. A randomly chosen right-right gap would have size
of order L /NR and could shrink to form a pair in a time
�L2 /NRNL. If this pair alters the evolution to produce con-
stant average growth on this time scale, then dL /dt�1/L2

leads to L� t1/3. Are there solutions with this behavior? Do
the fluctuations in a solution growing as �t include intervals
when the growth is as t1/3, correlated with the formation and
destruction of pairs?

Finally, it should be straightforward to quantize this
model lattice gas, generalizing Refs. �7,8�. The Hilbert space
would be the direct sum H= �L=1

� HL of the Hilbert spaces for
lattices of all fixed lengths L. Advection occurs within each
HL, but scattering causes transitions between them. The
quantized model would be similar to that of Ref. �2�, but
with evolution in discrete rather than continuous time. It is
possible that the model, at least with few particles, is solv-
able by Bethe ansatz or other methods.
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APPENDIX A: THE ONE AGAINST THREE SYSTEM
WITH PAIRS

We continue example 3 with the evolution of state �A�,
which appears below. Note that after eight interactions, we
have a state of type �D�, so type �D� is contained in the same
orbit. As long as no other pairs appear, type �A� forms a
parity-periodic orbit of length 16. �L=−2 after one such
orbit: the gap between particles l2,l3 decreases by 2. Pairs can
appear in state �d� if g23+1=1, in state �j� if g31+1=1, and in
state �o� if g23−1=1.

Suppose g31+1=1 in �j�. This is a pair as in type �C�, so
from here on, the orbit is growing.

Let g23−2k+1=1. The change in the pattern occurs in the
kth run through the orbit �a�–�p�. For k=0 state �d� contains
a pair of type �C�. For k�0 state �o� contains a pair of type
�D�, �1;1,1,1� with first and third gap length equal to one.
This state evolves to state �j� with first gap of length one: a
type �C� pair has formed. We already know that type �C�
belongs to a growing orbit.

So systems of type �A� and �D� produce a parity-periodic
orbit of decreasing length. As soon as a second pair forms,
we observe a transition via �D� to the growing orbit of type
�B�.

FIG. 3. Notation for two right movers vs. two left movers.
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�a� �1;g12=1 ,g23,g31;1�
↓+1

�b� �0;g31,g12=1 ,g23+1 ;0�
↓+1

�c� �0;g12=1 ,g23+1 ,g31+1 ;1�
↓+1

�d� �1;g23+1 ,g31+1 ,g12+1;0�
↓−1

�e� �0;g31+1 ,g12+1 ,g23;1�
↓+1

�f� �1;g12+1 ,g23,g31+2;0�
↓−1

�g� �1;g23,g31+2 ,g12=1 ;1�
↓−1

�h� �1;g31+2 ,g12=1 ,g23−1 ;0�
↓−1

�i� �1;g12=1 ,g23−1 ,g31+1 ;1�
↓+1

�j� �1;g31+1 ,g12=1 ,g23;0�
↓−1

�k� �0;g12=1 ,g23,g31;1�
↓+1

�l� �1;g23,g31,g12+1;0�
↓−1

�m� �1;g31,g12+1 ,g23−1 ;1�
↓−1

�n� �1;g12+1 ,g23−1 ,g31−1 ;0�
↓−1

�o� �1;g23−1 ,g31−1 ,g12=1 ;1�
↓−1

�p� �0;g31−1 ,g12=1 ,g23−2;0�
↓+1

�a�� �1;g12=1 ,g23−2 ,g31;1�

APPENDIX B: DETAILS OF THE TWO AGAINST
TWO SYSTEM

We start by looking at the cases where no pairs appear. In
order to describe the evolution of the system, we give pairs
of 4-tuples �d11;g12,g21; �L�� �d21;g12,g21; �L��.

In contrast to the previous notation, we give the actual
separation between the right mover ri and the next left mover
lj that ri faces. Let h21ªd�r2 ,r1� be the gap between the two
right movers. As before, bold font is used to denote odd
length. Furthermore, we add an arrow ±1↓ to show the
change of the length of the lattice. The arrows also indicate
which pair is interacting.

Note that d21=d11+h21. We know that the order of the
interactions does not matter. Thus in the example below we
can fix the order of interactions by assuming h21�g12−2 in
�2� and h21+1�g21−2 in �4�.

Example 1. We start with a system where g12 is even, g21
odd �i.e., the lattice has odd length�. Also let h21 and d11 be
even. Recall that notation such as g12 below denotes this gap
in the initial state �1�; as the gaps change during evolution
their current values are indicated by their positions:

Particle r1 Particle r2

�1� �d11;g12,g21 ;1� �h21+d11;g12,g21 ;1�
↓+1

�2� �g12;g21 ,g12+1 ;0� �h21;g12+1 ,g21 ;0�
↓+1

�3� �g12−h21;g21 ,g12+2;1� �g12+1 ;g12+2 ,g21 ;1�
↓+1

�4� �g21 ;g12+2 ,g21+1;0� �h21+1 ;g21+1 ,g12+2;0�
↓−1

�5� �g21−h21−2 ;g12+2 ,g21 ;1� �g21;g12+2 ,g21 ;1�
↓−1

�6� �g12+1 ;g21 ,g12+1 ;0� �h21+1 ;g12+1 ,g21 ;0�
↓−1

�7� �g12−h21−1 ;g21 ,g12;1� �g12;g21 ,g12;1�
↓−1

�8� �g21−1;g12,g21−1;0� �h21;g21−1 ,g12;0�
↓+1

�1�� �g21−h21−1;g12,g21 ;1� �g21−1;g12,g21 ;1�

The assumption g21�3 �i.e., the gap between l2 and l1 is at least three� ensures that the exclusion rule does not apply in step
�7�.
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There are 16 possible parity combinations for h21,d11,g12,g21. In that language, the parities that occur in example 1 above
are �0,0,0,1� in �1�, �1,0,1,0� in �3�, �0,1,0,1� in �5�, and �1,1,1,0� in �7�.

Example 2. Next we assume d11 to be even, h21,g21 even and g12 odd:

Particle r1 Particle r2

�1� �d11;g12 ,g21;1� �h21+d11;g12 ,g21;1�
↓+1

�2� �g12 ;g21,g12+1;0� �h21;g12+1 ,g21;0�
↓+1

�3� �g12−h21 ;g21,g12+2 ;1� �g12+1;g21,g12+2 ;1�
↓−1

�4� �g21−1 ;g12+2 ,g21−1 ;0� �h21;g21−1 ,g12+2 ;0�
↓+1

�5� �g21−h21−1 ;g12+2 ,g21;1� �g21−1 ;g12+2 ,g21;1�
↓−1

�6� �g12+1;g21,g12+1;0� �h21−1 ;g12+1 ,g21;0�
↓−1

�7� �g12−h21+1;g21,g12 ;1� �g12;g21,g12 ;1�
↓+1

�8� �g21;g12 ,g21+1 ;0� �h21−1 ;g21+1 ,g12 ;0�
↓−1

�1�� �g21−h21;g12 ,g21;1� �g21;g12 ,g21;1�

This is again a periodic orbit. The only situations where the exclusion rule can apply are in state �5� if g12+2=1 �i.e.,
d�l1 , l2�=1� or in state �3� if g12+1− �g12−h21�=h21+1=1 �i.e., d�r2 ,r1�=1�. Note that the odd numbered states are the
interlaced ones. The parity configurations of the distances d�ri+1 ,ri�, d�ri , lj�, d�lj , lj+1�, d�lj+1 , lj+2� are �0,0,1,0� in �1�, �1,1,0,1�
in �3�, �0,1,1,0� in �5� and �1,1,0,1� in �7�. Now we describe the systems where the length of the lattice is increasing.

Example 3. Let h21 and d11 be even, g12 and g21 odd:

Particle r1 Particle r2

�1� �d11;g12 ,g21 ;0� �h21+d11;g12 ,g21 ;0�
↓+1

�2� �g12 ;g21 ,g12+1;1� �h21;g12+1 ,g21 ;1�
↓+1

�3� �g12−h21 ;g21 ,g12+2 ;0� �g12+1;g21 ,g12+2 ;0�
↓−1

�4� �g21−1;g12+2 ,g21−1;1� �h21;g21−1 ,g12+2 ;1�
↓+1

�1�� �g21−h21−1;g12+2 ,g21 ;0� �g21−1;g12+2 ,g21 ;0�

After four interactions we return to the initial parity configuration, with �L=2 �the gap d�l1 , l2� grows by 2�. In the noninter-
laced states we have the following parity configurations of the distances d�ri+1 ,ri�, d�ri , lj�, d�lj , lj+1�, d�lj+1 , lj+2�: �0,0,1,1� in
�1� and �1,1,1,1� in �3�.

Example 4. In this case, h21 is odd, d11 even, g12 and g21 even:

Particle r1 Particle r2

�1� �d11;g12,g21;0� �h21+d11 ;g12,g21;0�
↓+1

�2� �g12;g21,g12+1 ;1� �h21 ;g12+1 ,g21;1�
↓−1

�3� �g12−h21−1;g21,g12;0� �g12;g21,g12;0�
↓+1

�4� �g21;g12,g21+1 ;1� �h21+1;g21+1 ,g12;1�
↓+1

�1�� �g21−h21−1;g12,g21+2;0� �g21+1 ;g12,g21+2;0�
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This is another growing lattice. After four interactions, the gap between l2 and l1 has grown by 2, with the other gaps
unchanged. The parities are �1,0,0,0� in �1� and �0,0,0,0� in Eq. �3�.

There are four remaining parity combinations. They belong to two systems with decreasing length. We describe them in the
two examples below.

Example 5. Let h21, g12 and g21 be even, d11 odd:

Particle r1 Particle r2

�1� �d11 ;g12,g21;0� �h21+d11 ;g12,g21;0�
↓−1

�2� �g12−1 ;g21,g12−1 ;1� �h21−1 ;g12−1 ,g21;1�
↓−1

�3� �g21−h21−1 ;g21,g12−2;0� �g12−2;g21,g12−2;0�
↓−1

�4� �g21−1 ;g12−2 ,g21−1 ;1� �h21−2;g21−1 ,g12−2;1�
↓+1

�1�� �g21−h21+1 ;g21−2 ,g21;0� �g21−1 ;g12−2 ,g21;0�

After four interactions we return to the same parities but with �L=−2 �gap g12�g12−2�. In other words, this system is
shrinking as long as no pairs occur. A pair can form in state �3�. There the distance between particles r2 and r1 after k cycles
�1�–�4� is g12−2k− �g21−h21−1�, which will eventually shrink to 1. In this case we obtain pairs as in the system with label �b�
of example 8 below by switching the roles of the left movers and the right movers. The parities of this example are �0,1,0,0�
in �1� and �1,1,0,0� in �3�.

Example 6. Finally, let d11,g12,g21 be odd and h21 be even:

Particle r1 Particle r2

�1� �d11 ;g12 ,g21 ;0� �h21+d11 ;g12 ,g21 ;0�
↓−1

�2� �g12−1;g21 ,g12−1;1� �h21−1 ;g12−1 ,g21 ;1�
↓−1

�3� �g12−h21−1;g21 ,g12−2 ;0� �g12 ;g21 ,g12−2;0�
↓+1

�4� �g21 ;g12−2 ,g21+1;1� �h21−1 ;g21+1 ,g12−2 ;1�
↓−1

�1�� �g21−h21 ;g12−2 ,g21 ;0� �g21 ;g12−2 ,g21 ;0�

After four interactions, the length of the lattice has decreased
by two �gap g12�g12−2�. This is a shrinking system as long
as no pairs appear. A pair appears in state �1�, as soon as
g12−2k=1 �i.e., after k cycles �1�–�4��, when we obtain a pair
as in the system with label b�, example 8. The parities of this
example are �0,1,1,1� in �1� and �1,0,1,1� in �3�.

We now describe the patterns when pairs are present
initially or form during the evolution �see Fig. 4�. There are
six different configurations with pairs. The gap d11 has to
be odd if the pair is to affect the evolution of the system,
and we assume g12=1. Then we have the following parity

combinations for the remaining distances:

Label h21 g21

a� 0 0

b� 0 1

c� 1 with h21�1 0

d� 1 with h21�1 1

e� 1 with h21=1 0

f� 1 with h21=1 1

Example 7. [Cases (a), (d), and (c)]. We start with h21 and
g21 even �i.e., a lattice of odd length�. Assume that no other
pair forms. The corresponding conditions are g21− �h21−1�
�3 in state �2�, and g21− �g21−h21−1�=h21+1�3 in state
�7�. We will discuss these other cases below:FIG. 4. Notation for two vs two with pairs.
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Particle r1 Particle r2

�1� �d11 ;g12=1 ,g21;1� �h21+d11 ;g12=1 ,g21;1�

↓+1
�2� �g21;g12=1 ,g21+1 ;0� �h21−1 ;g12=1 ,g21+1 ;0�

↓+1
�3� �g21−h21;g12=1 ,g21+2;1� �g21+1 ;g12=1 ,g21+2;1�

↓+1

�4� �g12=1 ;g21+2 ,g12+1;0� �h21+1 ;g12+1 ,g21+2;0�
↓−1

�5� �g21+1 ;g12+1 ,g21+1 ;1� �h21−1 ;g12+1 ,g21+1 ;1�
↓−1

�6� �g21−h21+1 ;g12=1 ,g21+1 ;0� �g12=1 ;g21+1 ,g12=1 ;0�
↓−1

�7� �g21−h21−1 ;g12=1 ,g21;1� �g21;g12=1 ,g21;1�
↓+1

�8� �g21;g12=1 ,g21+1 ;0� �h21;g12=1 ,g21+1 ;0�
↓+1

�9� �g21−h21;g21+1 ,g21+1 ;1� �g12=1 ;g21+1 ,g12+1;1�
↓−1

�10� �g21−h21−g12−1;g12+1 ,g21;0� �g21;g12+1 ,g21;0�

The first observation is that state �2� is as case �d� �with particles r1, r2 switched� by the assumption that the gap between
r1 and r2 is at least 3. Similarly, state �7� is as case �c� The distance between r2 and r1 is odd and at least 3 �by the
assumptions�, the distance between l2 and l1 is even. Finally note that state �10� is as state �3� in example 4. This means that
the system evolves into a growing lattice as in example 4.

Consider now other pairs of nearest neighbors. Let g21=h21 �i.e., g21− �h21−1�=1 in �2��. Then the state �2� has the same
parities as case �f�: the right movers form a pair, as do the left movers, and the gap between the particles r2 and l1 is odd. So
for g21=h21 the system will evolve as �f�.

Let h21+1=1. Then state �7� has the same parities as case �e�.
Example 8 (Case b). We start with h21 even and g21 odd �i.e., a lattice of even length�:

Particle r1 Particle r2

�1� �d11;g12=1 ,g21;0� �h21+d11;g12=1 ,g21;0�
↓+1

�2� �g21;g21=1 ,g21+1;1� �h21−1 ;g12=1 ,g21+1;1�
↓+1

Note that state �2� is as in �a�.
It remains to discuss cases �e� and �f�. These are the cases where two pairs of nearest neighbors face each other with an odd

distance between them. That means we have g12=h21=1, and necessarily g21�3.
Example 9. Let particles r2, r1 be paired as well as particles l1,l2. Assume that g21 is even �i.e., lattice of odd length�. So g21

is at least equal to 4.

Particle r1 Particle r2

�1� �d11;g12=1 ,g21;1� �h21+d11;g12=1 ,g21;1�
↓+1 ↓+1

�2� �g21;g12+1 ,g21+1 ;1� �h21=1 ;g21+1 ,g12+1;1�
↓−1

�3� �g21−h21−1;g12+1 ,g21;0� �g21;g12+1 ,g21;0�

Note that state �3� has the same parities as state �3� in example 4. So the system evolves into a growing orbit as in
example 4.

Example 10. Let r2,r1 and l1,l2 each be pairs, with g21 odd �g21�3�. The length of the lattice is then even:
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Particle r1 Particle r2

�1� �d11;g12=1 ,g21;0� �h21+d11;g12=1 ,g21;0�
↓+1 ↓+1

�2� �g21;g12+1 ,g21+1;0� �h21=1 ;g21+1 ,g12+1;0�
↓−1

�3� �g21−h21−1 ;g12+1 ,g21;1� �g21;g12+1 ,g21;1�
↓−1

�4� �g12=1 ;g21,g12=1 ;0� �h21;g12=1 ,g21;0�
↓+1

�5� �g21−h21;g21+1 ,g12,1� �g21;g12=1 ,g21+1;1�
↓+1

�6� �g12=1 ;g21+1 ,g12+1;0� �h21;g12+1 ,g21+1;0�
↓−1

�7� �g21;g12=1 ,g21;0� �g12=1 ;g21,g12=1 ;0�
↓−1

�8� �g21−g12−1 ;g12=1 ,g21−1;1� �g21−1;g12=1 ,g21−1;1�

Note that state �8� has the same parities as state �1� in example 9. So the system will switch to that example and then to a
growing orbit �as in example 4�.
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